首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17528篇
  免费   1640篇
  国内免费   3105篇
  2024年   10篇
  2023年   325篇
  2022年   360篇
  2021年   489篇
  2020年   572篇
  2019年   643篇
  2018年   594篇
  2017年   611篇
  2016年   727篇
  2015年   675篇
  2014年   784篇
  2013年   1107篇
  2012年   757篇
  2011年   819篇
  2010年   628篇
  2009年   878篇
  2008年   935篇
  2007年   960篇
  2006年   958篇
  2005年   868篇
  2004年   725篇
  2003年   752篇
  2002年   642篇
  2001年   598篇
  2000年   469篇
  1999年   538篇
  1998年   432篇
  1997年   367篇
  1996年   381篇
  1995年   363篇
  1994年   352篇
  1993年   372篇
  1992年   335篇
  1991年   298篇
  1990年   281篇
  1989年   251篇
  1988年   248篇
  1987年   180篇
  1986年   158篇
  1985年   160篇
  1984年   146篇
  1983年   84篇
  1982年   107篇
  1981年   76篇
  1980年   61篇
  1979年   49篇
  1978年   39篇
  1977年   23篇
  1976年   36篇
  1974年   16篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
31.
32.
  • Orchids are distributed around the world, however, the factors shaping their specific distribution and habitat preferences are largely unknown. Moreover, many orchids are at risk of becoming threatened as landscapes change, sometimes declining without apparent reason. One important factor affecting plant distribution is nutrient levels in the environment. Nitrates can inhibit not only orchid growth and persistence, but also seed germination.
  • We used in vitro axenic cultures to exactly determine the germination sensitivity of seven orchid species to nitrates and correlated this with soil properties of the natural sites and with the species’ habitat preferences.
  • We found high variation in response to nitrate between species. Orchids from oligotrophic habitats were highly sensitive, while orchids from more eutrophic habitats were almost insensitive. Sensitivity to nitrate was also associated with soil parameters that indicated a higher nitrification rate.
  • Our results indicate that nitrate can affect orchid distribution via direct inhibition of seed germination. Nitrate levels in soils are increasing rapidly due to intensification of agricultural processes and concurrent soil pollution, and we propose this increase could cause a decline in some orchid species.
  相似文献   
33.
34.
目录     
《生态学杂志》2020,39(6):0
  相似文献   
35.
Seed dispersal influences a wide range of ecological processes. However, measuring dispersal patterns, particularly long‐distance dispersal, has been a difficult task. Marking bird‐dispersed seeds with stable 15N isotopes has been shown to be a user‐friendly method to trace seed dispersal. In this study, we determined whether 15N urea solution could be used to enrich seeds of two common wind‐dispersed plants, Eupatorium glaucescens (Asteraceae) and Sericocarpus tortifolius (Asteraceae). We further tested if the water type (distilled versus tap) in 15N urea solutions influences the level and variability of enrichment of plant seeds, and if increasing spraying frequency per se increases enrichment. Because droughts may lower seed set or kill plants, we wanted to investigate if the additional use of an externally applied anti‐transpirant affects the intake of externally applied 15N into seeds. The results demonstrate that 15N enrichment of seeds can facilitate dispersal experiments with wind‐dispersed plants. The use of distilled water in 15N urea solutions did not increase 15N enrichment compared to tap water. Further, enrichment was more efficient at lower spray frequencies. Both the use of tap water and low frequencies could lower time, effort and project costs. The results suggest that species can be protected from drought using an anti‐transpirant without decreasing the incorporation of 15N into seeds.  相似文献   
36.
The effect of NO2 fumigation on root N uptake and metabolism was investigated in 3-month-old spruce (Picea abics L. Karst) seedlings. In a first experiment, the contribution of NO2 to the plant N budget was measured during a 48 h fumigation with 100mm3m?3 NO2. Plants were pre-treated with various nutrient solutions containing NO2 and NH4+, NO3? only or no nitrogen source for 1 week prior to the beginning of fumigation. Absence of NH4+ in the solution for 6d led to an increased capacity for NO3? uptake, whereas the absence of both ions caused a decrease in the plant N concentration, with no change in NO3? uptake. In fumigated plants, NO2 uptake accounted for 20–40% of NO3? uptake. Root NO3? uptake in plants supplied with NH4+plus NO3? solutions was decreased by NO2 fumigation, whereas it was not significantly altered in the other treatments. In a second experiment, spruce seedlings were grown on a solution containing both NO2 and NH4+ and were fumigated or not with 100mm3m?3 NO2 for 7 weeks. Fumigated plants accumulated less dry matter, especially in the roots. Fluxes of the two N species were estimated from their accumulations in shoots and roots, xylem exudate analysis and 15N labelling. Root NH4+ uptake was approximately three times higher than NO3? uptake. Nitrogen dioxide uptake represented 10–15% of the total N budget of the plants. In control plants, N assimilation occurred mainly in the roots and organic nitrogen was the main form of N transported to the shoot. Phloem transport of organic nitrogen accounted for 17% of its xylem transport. In fumigated plants, neither NO3? nor NH4+ accumulated in the shoot, showing that all the absorbed NO2 was assimilated. Root NO3? reduction was reduced whereas organic nitrogen transport in the phloem increased by a factor of 3 in NO2-fimugated as compared with control plants. The significance of the results for the regulation of whole-plant N utilization is discussed.  相似文献   
37.
Drug resistance is a critical obstacle to effective treatment in patients with chronic myeloid leukemia. To understand the underlying resistance mechanisms in response to imatinib mesylate (IMA) and adriamycin (ADR), the parental K562 cells were treated with low doses of IMA or ADR for 2 months to generate derivative cells with mild, intermediate, and severe resistance to the drugs as defined by their increasing resistance index. PulseDIA-based (DIA [data-independent acquisition]) quantitative proteomics was then employed to reveal the proteome changes in these resistant cells. In total, 7082 proteins from 98,232 peptides were identified and quantified from the dataset using four DIA software tools including OpenSWATH, Spectronaut, DIA-NN, and EncyclopeDIA. Sirtuin signaling pathway was found to be significantly enriched in both ADR-resistant and IMA-resistant K562 cells. In particular, isocitrate dehydrogenase (NADP(+)) 2 was identified as a potential drug target correlated with the drug resistance phenotype, and its inhibition by the antagonist AGI-6780 reversed the acquired resistance in K562 cells to either ADR or IMA. Together, our study has implicated isocitrate dehydrogenase (NADP(+)) 2 as a potential target that can be therapeutically leveraged to alleviate the drug resistance in K562 cells when treated with IMA and ADR.  相似文献   
38.
The problem of cryptic species in Diacyclops bicuspidatus was examined using interpopulation crosses of four populations collected from a: (1) permanent flood lake in Kiev, Ukraine, (2) temporary pool in Kiev, (3) permanent pond in St. Petersburg, Russia (1200 km to north from Kiev) and (4) lake in Crimea (1100 km south of Kiev). The only interpopulation crosses to exhibit fertility were those between the St. Petersburg population and each of the two Kiev populations. The crosses between the Kiev and Crimea populations, between the St. Petersburg and Crimea populations, and between the two Kiev populations were sterile, as evidenced by either nonviable eggs, empty egg membranes or incomplete copulations. The F1 hybrids resulting from the St. Petersburg permanent pond X Kiev flood lake cross were fertile and produced mature F2 offspring. Some data on development times of parental and hybrid lines are presented. The St. Petersburg parental line showed development times almost twice as long as those of the Kiev flood lake population when reared at 10 °C and 20 °C in the laboratory. The F1 offspring of the cross between St. Petersburg females and Kiev floodlake males showed similar development times to females of the St. Petersburg parental lines at both temperatures. The F2 hybrids also showed development times that approximated those of the St. Petersburg parental line. These crossbreeding studies suggest the presence of cryptic species in the D. bicuspidatus inhabiting ecologically different populations in many parts of its large holarctic range.  相似文献   
39.
Aspergillus flavus is a common saprophytic and pathogenic fungus, and its secondary metabolic pathways are one of the most highly characterized owing to its aflatoxin (AF) metabolite affecting global economic crops and human health. Different natural environments can cause significant variations in AF synthesis. Succinylation was recently identified as one of the most critical regulatory post-translational modifications affecting metabolic pathways. It is primarily reported in human cells and bacteria with few studies on fungi. Proteomic quantification of lysine succinylation (Ksuc) exploring its potential involvement in secondary metabolism regulation (including AF production) has not been performed under natural conditions in A. flavus. In this study, a quantification method was performed based on tandem mass tag labeling and antibody-based affinity enrichment of succinylated peptides via high accuracy nano-liquid chromatography with tandem mass spectrometry to explore the succinylation mechanism affecting the pathogenicity of naturally isolated A. flavus strains with varying toxin production. Altogether, 1240 Ksuc sites in 768 proteins were identified with 1103 sites in 685 proteins quantified. Comparing succinylated protein levels between high and low AF-producing A. flavus strains, bioinformatics analysis indicated that most succinylated proteins located in the AF biosynthetic pathway were downregulated, which directly affected AF synthesis. Versicolorin B synthase is a key catalytic enzyme for heterochrome B synthesis during AF synthesis. Site-directed mutagenesis and biochemical studies revealed that versicolorin B synthase succinylation is an important regulatory mechanism affecting sclerotia development and AF biosynthesis in A. flavus. In summary, our quantitative study of the lysine succinylome in high/low AF-producing strains revealed the role of Ksuc in regulating AF biosynthesis. We revealed novel insights into the metabolism of AF biosynthesis using naturally isolated A. flavus strains and identified a rich source of metabolism-related enzymes regulated by succinylation.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号